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A free-streamline model of the two-dimensional sail 
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University of Toronto 

(Received 27 October 1969 and in revised form 12 January 1970) 

The two-dimensional sail is considered in a free-streamline model to complement 
the oft-considered airfoil model which is limited to small angles of attack. The 
shape of the sail, the lift and drag coefficients, and the moment are obtained for 
various angles of attack and states of tension. 

1. Introduction 
The sailboat is an intriguing device long used by man in his livelihood and 

recreation. The sail, as the motive power for the boat, has been the object of 
much interest. Although there have been several attempts by fluid mechanicians 
over the years to model the sail analytically, most efforts to quantitatively 
evaluate its efficiency have been experimental (cf. Shenstone 1968). Probably 
the most interesting experiment, by which to obtain the efficiency of the sail 
set at different trim, is to measure the speed of one’s own boat. Evidently, the 
efficiency of the sail is increased if the boat moves faster. There seems to be little 
doubt that this is the best way to design a sail (Marchaj 1964; Letcher 1965). 
However, to model a sail analytically presents a challenge that, in the end, could 
increase our knowledge of its workings. 

The first model of a sail seems to be that of Cisotti (1932). This is a free- 
streamline model in which the flow separates a t  the edges of the sail, forming an 
infinite quiescent wake. Since Cisotti did not exhibit any results, his model is 
used here to determine the shape and the lift and drag coefficients of an idealized 
sail. This model is essentially different from the more recent aerodynamic models 
chosen by Voelz (1950) and Thwaites (1961). In  these papers, the sail is replaced 
by a linear distribution of vortices just as is done in airfoil theory, with the 
exception of the change in the boundary condition. Voelz (1950) obtained the 
sail shape and the f i s t  eigenvalue of the linear integral equation for the strength 
of the vortex sheet. The solution for values of the parameter that are less than 
this eigenvalue is shown to be the usual concave shape expected of a sail. Some- 
what surprisingly, however, the solution for values of the parameter greater 
than the eigenvalue showed an inflexion of the sail profile. Thwaites (1961), 
apparently unaware of the earlier work, covered some of the same ground and 
he showed the existence of higher eigenvalues, each one determining the onset 
of a higher mode of the sail shape. These papers also exhibit lift coefficients. 
Chambers (1966) confirmed the earlier numerical estimates of the eigenvalues 
by a variational procedure and Nielsen (1963), choosing to formulate the problem 
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in terms of airfoil camber and a differential equation for the aerodynamic loading 
of the sail instead of in an integral equation, obtained equivalent results. Nielsen 
(1963) also performed experiments on a flexible sail in a wind tunnel and, although 
the results shown are sketchy, a comment on the possible importance of the 
porosity of the sail fabric apparently stimulated an analysis of the effects of 
porosity by Barakat (1968). 

The airfoil theory predicts some interesting characteristics of sails. Probably 
the most important is the existence of inflexion points in the profile when the 
tension is not too great. That theory is, however, limited to very small angles of 
attack (ones smaller than those usually found on boats) and it predicts zero drag. 
The model used here eliminates these difficulties, but it does still treat only two- 
dimensional sails, and it does have physical limitations of its own. For example, 
the free-streamline theory in the simple form used here predicts a wake of infinite 
length. One does find a long wake in practice as every sailor knows when he is 
‘covered’, but it does not extend to infinity. Also, as used in practice, the sail 
is seldom fully ‘stalled’, that is, only partial separation occurs. Finally, this 
model still leaves out all effects of viscosity and turbulence. 

This formulation, then, based on Cisotti’s model, uses the conformal mapping 
technique of Levi-Civita (1907) as modified by Villat (191 1) and as discussed by 
Birkhoff & Zarantonello (1957). Thus, the particulars are somewhat different 
from those of Cisotti. The resulting non-linear, singular integral equation has 
been solved for asymptotically small deflexion of the sail for the special case of 
a symmetric sail (Dugan 1966). Here, it is solved asymptotically for small 
deflexion, and solved numerically to obtain the sail and free streamline profiles 
and the drag, lift and moment experienced by the sail. 

2. Formulation 

be formulated in the complex notation, 
The representation of incompressible, two-dimensional potential motion can 

I 2 = X t i Y  = L-l(x+i$), 

w = CI, + iY = U-1L-1($ + i$), 
1 

where U is the uniform fluid velocity at infinity, L is the length of the sail, small- 
lettered variables are dimensional, and capital lettered ones non-dimensional. 
The co-ordinate system and appropriate variables are shown in figure 1. The 
boundary conditions are that the velocity is uniform at infinity, the pressure is 
continuous across the free streamlines, and the pressure difference across the 
sail is balanced by the tension along the sail. The first and second boundary 

(2) 
conditions give 

where Po is the pressure in the quiescent wake. This gives the condition, 

&pU21[12+P = &pU2+Po = const., 

ILJ2 = 1 on AJ, and BJz, (3) 
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( P  - Po) dl cos (dp) = T sin (dp), 

435 

the free streamlines. A force balance on a differential element of the sail as shown 
in figure 2 gives 

where dl is the differential arc length and dp is the differential angle of deflexion 
of the element. The tension T is assumed to be constant and the sail to be in- 
extensible. Since dp is small, (2) and (4) give 

(4) 

as the boundary condition on the sail. J. 

! A 1 

J ,  

FIGURE 1. The physical z-plane. 

X 

FIGURE 2. Force balance on an element of the sail. 
28-2 
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If one could directly obtain the mapping of the W-plane into the Z-plane the 
problem would be simple indeed. However, this is not practically possible so it 
is convenient to utilize the technique of Levi-Civita (1907) as modified by Villat 
(1911). This method consists of mapping the W-plane into an auxiliary t-plane 
and finding an analytic function a, called the Levi-Civita function, that maps the 
t-plane into the [-plane where it is possible to apply the boundary conditions. 
The t-plane contains the flow fieldin the interior ofa semi-circle, the circumference 

W-plane 

t-plane 

FIGURE 3. Auxiliary complex planes. 

of which corresponds to the sail and the diameter of which corresponds to the 
free streamlines. A functional relation involving the Levi-Civita function is 
assumed between the c- and t-planes. This functional relation, once Q is computed, 
completes the connexion between the W -  and fS-planes. 

The W-plane is mapped into the t-plane by the transformation, 

W = M[cos fTo - &(t + t-l)]Z, (6) 

as shown in figure 3. M is an unknown constant introduced in the normalization 
of the semi-circle and reflects the fact that the separation points A and B cannot 
be explicitly located in the W-plane. An integral relation for M will be derived 
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later. The functional relation between the t- and <-planes is assumed to be of 
the form, 

The Levi-Civita function Q is a complex quantity in general, and it may be 

(8) 
written Q = 6+i7. 

This particular form for the relation between the <- and t-planes is chosen because 
it immediately allows SZ to be single-valued and continuous in t and it allows 
automatic satisfaction of one of the boundary conditions. The choice is really 
fixed by the solution of the corresponding flat plate problem. 

Thus, since the free streamlines correspond to the interval ( -  1 , l )  of the real 
line in the t-plane, the requirement, 

t = a ,  - l < a < l ,  

gives (9) 

With (3), this gives T = O  on - l < R e t < 1 .  (10) 

Therefore, requiring s1 to be real on the real line will satisfy this boundary con- 
dition automatically. Also, the sail corresponds to 

t = eta (0 6 a < T), 

so that 
-ao-6+n on O < c r < a o ,  

-a,,-6 on a,< a < n .  
argc = 

Due to the form of (7), then, the fluid velocity has a jump in its argument of n 
radians at  the stagnation point go, as it should from physical reasoning. This allows 
52 to be single-valued and continuous everywhere in the interior of the t-plane. 

It remains to use these expressions to obtain s1. A simple construction (Birk- 
hoff & Zarantonello 1957, p. 134, or Dugan 1966, p. 11) shows that 

ao+e = p, 
or d6 = dp, 
so that (5) can be written as 

Geometric arguments give dl = LldZI, 

dl 
da 

and this, with (l), yields - = 

so that on t = eiu, and with (6) and (7), 

ae 
- = 2MK sin a{sin a sin a. cosh T ( C )  
dcT 

-(l-cosacosao)sinh~(a)} (0 < a < n), (13) 
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where 

Recapitulating, (13) is a relation between 19 and 7 ,  the real and imaginary parts 
of the Levi-Civita function. It represents the boundary condition on the sail. 

The Levi-Civita function may be extended to an analytic function in the unit 
circle I t /  < 1,  so that the series m 

Q(t)  = c ant’& (14) 
i a  = 0 

exists. The an’s must all be real constants by (1  0 )  (the boundary condition on the 
free streamlines), so that, with (S), 

on 1 = ein (0 6 a < n). (15) I m 

O(a) = Ca,cosna, 
n = O  

CC 

7(a) = C a, sin na, 
n = O  

Since both expressions contain the same constants, this constitutes a second 
relation between I9 and r. This relationship may be written in the more convenient 
form 

2 sinjasinjd 1 sin+(g+a‘) 
nj=1 j 7~ ,sing(a-a’) ‘ 

where D(a,a’) = - - C = - -In1 

(cf. Birkhoff & Zarantonello 1957, p. 136, or Dugan 1966, appendix IB). The 
substitution of ( 13) into the integral expression (1 6) gives 

2 j:lnlsin:(n+a’)/ 
77 sin &( a - a’) 7(a) = - - M K  sin a’(sin a’ sin a. coshr(a’) 

-((l-cosrr‘cosao)sinhr(rr‘)}da’ (0 6 a < n). (17 )  

This is a non-linear, singular integral equation for the imaginary part of the 
Levi-Civita function. Once r(a) is determined, Q(t) can be constructed by 
obtaining the coefficients of the power series (14). However, there still remains 
in the integral equation the unknown constant M that was introduced in the 
conformal mapping. 

This constant can be determined from the side condition (that has not been 
used up to now) that the total length of the sail is L. Using the geometric argument 
before (13), 

and, substituting from above, 

dZ = 2ML sin a[ 1 - cos (rr + go)]  e-T(v)da, 

so that, upon integration, the side condition on M is 

This relation, along with the integral equation (1 7) suffices to determine 7( IT). 
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The sail and free streamline profiles are obtained through (1) 
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so that, substituting again from above, 

1 - t eiuo 
t - &a 

dZ = - -~ ei(U0-d &W) Jf[cos 0 - -( ; t+t-l)][l-t-2]dt. (19) 

The parametric equations of the sail profile are obtained by substituting t = eiu 
into this expression and integrating from the stagnation point C to the ends of 
the sail, that is, from t = eiqo to t = 1 or - 1. The equations are 

h 

2 = 2 M  sin a’[ 1 - cos (a’ + g 0 )] e i ( ~ o + ~ ( ~ O )  e-T(u’) dq‘ ,  (20) 1: 
where 2 = d +ir? denotes the co-ordinates of the sail profile. The equations of 
the free streamline profiles are obtained by substituting t = a where a is real 
into (19), and integrating from the ends of the sail t o  infinity, that is, from t = 1 
or t = - 1 to t = 0. In this case, the equations are 

h z- z, = : ~ j ~  a‘-3(1 -a’2) [2a’- (1 +a’2)  cos Go 
il 

+ i( 1 - a ’ 2 )  sin g,]ei(~o+Na’))da’ , (21) 
A h  

yhere Z - ZTA= (x  - 2,) + i( r? - fT) denotes the co-ordinates of the profiles and 
2, = 8, + i Y ,  denotes the co-ordinates of the ends of the sail. 

Just as for the profiles, the forces acting on the sail can be obtained by quad- 
ratures. Thus, a simple derivation gives 

dF = -i(P-P,)dZ, 

so that 

or, F = - 2 i M p U 2 L  {sinosinaocosh7(u) 

- (1 - cos u cos ao) sinh T(a)}eico eie(c) sin a da. (22)  
1; 

It is easily shown that Fv = 0 for a. = $71 and that with 

F = Fz+iFv = +pU2L(CD+iC,), 

27r sin2 uo 
4 + 71 sin a, 

27r sin a. cos a. 
4 + 71 sin uo 

c, = ______ , c,=-- 

in the limit of K --f 0 of (22) .  These are the results for the flat plate. The drag and 
lift could have been obtained through the elegant formulae of Levi-Civita (see 
Gurevich 1966, p. 98) instead of through the integral (22 ) .  Similarly, the moment 
is given by 

or M = -pU2L2M [ l -cos(a-ao)]eT(~~sina 

M = Re(-~pUz~z~2dz} ,  (23) 

x {~(o)cos(oo+8(a))  + r?(o)sin(oo+8(o)))da, (24) 
1: 

where 8 ( ~ )  and P(a) are given by (20). 
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3. Solution of equations and results 
The determination of the sail profile and the forces and moment acting on the 

sail rests upon the solution of (17) for ~(0). The equation is solved below by an 
asymptotic technique for small deflexion of the sail and by a numerical technique 
for arbitrary deflexions. 

The limit K --f 0 (this may be interpreted as T + 00) reduces the problem to the 
flat-plate problem considered by Rayleigh (1876). Equation (17) gives 7(a) = 0 
so, by expressions (15), B ( a )  = 0. Evidently, then, 7(a) and B(v) are small for 
small deflexions of the sail ( K  4 1) .  I n  fact, the form of (17)  implies that M K  is 
an appropriate perturbation parameter so that it is natural to  assume a solution 
of the form, 

for MK < 1.  Actually, (1  7)  also implies that  7(0) 6 0, so (18) yields 

(25) 7(a) = 70(a) + MKT1(V) + (&!fK)27,(a) + . . . , 

M < (4+~rs ina , ) -~  < &, (26) 

verifying that IMK < 1 if K 4 1. Substituting the expansion (25) into (17), ex- 
panding the hyperbolic functions, and equating coefficients of equal powers in 
M K  gives the sequence of equations, 

7 0 ( 4  = 0, 

~ ~ ( a )  = - 4n-I sin go D(a, a’) sin a‘ da‘, SG 
T 2 ( V )  = 4n-1 D ( v ,  a’) (1 - cos a. cos a’) T1(Cr’) da’, 1: 

I 73(a) = - 4n-1 / , rD(a,  ol) {2-172,(a’) sin a. sin a’- (1 - cos aocos a’) 72(a’))da’, 

(27) 

where D(a,  a’) is the former of the two kernel functions ( I  6). Evaluation of these 
integrals gives 

sin(2n-1)a 
T ~ (  a) = 1677-l sin a. C 

9 L = l  (27%- 1)2[(2n- l)‘-4]’ 
m 

T ~ ( o - )  = -256n-2sinao C ((2j- 1) [(2j- 1)2-4]}-1 
j , , n = l  

cos go cos 2na - sin(2n--)a  { [ ( 2n - 1 )2 - 4 ( j - 1 )2] [ ( 2n - 1 )2 - 4j2] [ 4n2 - ( 2 j  - 3) ‘1 [ 4n2 - ( 2 j  + 1 ) ‘1 

(28) 

The next correction r3(a) has been computed, but it is quite messy and is not of 
sufficient interest to  include here. The corresponding values of the constant M 
can be obtained by substituting the expansion (25) and (28) into (18), so that 

+ O(K’)]. (29) 
16 n + 2 sin a. 

(4 + 7~ sin a o ) 2  
M = (4+nsincr0)-l 
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The resulting three-term approximate expression for ~ ( c r )  appears to converge 
for values of K up to unity; the two-term expansion for values up to about one- 
half. It is of more than passing interest to note that the first two terms above are 
identical to the first two terms of the Neumann series solution of the linearized 
form of (1 7 ) .  The non-linearity of (1  7) and, therefore, the non-linearity of the 
boundary condition on the sail becomes important when K 5 Q since that is 
when the third and higher order terms in the expansion ( 2 5 )  become important. 
The Neumann series solution mentioned above converges strictly for M K  < 3--9, 
the first eigenvalue of the homogeneous linearized equation (see Courant & 
Hilbert 1953, p. 153; Tricomi 1957, p. 50). In  the limit IT, -+ 0 and K < 1,  (29) 
gives M = 4-l, so that the expansion converges for K 2 2.310. Considering that 
this is only an approximate estimate of the limit of K in the linearized case of a 
completely different t,heory, it is remarkable that this value of K is so close to 
Voelz's (1950) first eigenvalue, 2.299 in the present notation, which was corrected 
by Thwaites (1961) and Chambers (1966) to 2.316. This limiting value of K has 
no bearing on the non-linear problem. 

In the approximation above, the drag and lift coefficients (22) are given by 

(sincr,--icosa,) 
2n- sin cr, 
4 + n- sin cr,, 

C =  

T + 2 sincr, 
4 + Tsin cr, 

The integral equation ( 17) with the side condition (1 8) also has been solved 
by successive approximations whereby, assuming an initial M, and T,(v), cor- 
rections are found successively by the formulae 

and ~,+~(cr) = 2M,,+, K D(cr, cr') sin cr' 
/On 

x (sincr'sina,coshT,(a')-(l - c o ~ c r ' ~ ~ ~ c r , ) s i n h ~ , , ( ~ ' ) ) d c r ' ,  (31) 

where D(a,a ' )  is the second kernel function (16). The integrals are evaluated 
numerically by Simpson's rule, proper care being taken with the singularity. 
The details of this and the calculation of the remaining integrals do not seem 
worth repeating here, they are straight-forward and, in any case, they may be 
found in Dugan (1966). We note only that the solution of (31) above converges 
nicely ( \M,+l- M,( < 0.0001, max \T,+~(cT) -T,(cT)~ < 0.0001) for cr, 5 5', K 2 7.  
Sample solutions for the sail profile are shown in figure 4 for several values of K 
and the angle of attack and, the lift and drag coefficients are plotted in figures 5 
and 6. Figure 7 is a plot of the liftldrag coefficient and figure 8 shows the moment 
acting on the sail. It should be noted that the parameter cr, is the angle of attagk 
of the 'equivalent' flat-plate problem. Since the positions of the endpoints 2, 
of the sail vary with K as well as with go, the real angle of attack (angle between 
a line joining the endpoints and the x-axis) can only be determined from the sail 
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profile. This is of minor importance but it does cause difficulty in an attempt to 
compare the resulting sail profiles with previously derived ones. In the figures, 
the angle of attack is the real angle of attack as defined above, not the angle of 
attack of the 'equivalent ' flat-plate problem. 

FIGURE 4. Sail profiles. In each case cr,, = 7.5'. Act,ual a,ngle of attack = 8.5" for K = 1, 
11" for K = 2, 16.5" for K = 3.5. 
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FIGURE 5. Plot of C,  verms angle of attack for various K. 0, K = 0.1; A, K = 3.5; 
0, K = 2; V,  K = 5. 
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The lift and drag coefficients as defined in $ 2  are proportional to those usually 
defined in airfoil theory except that the area is not the cross-sectional area but is 
the length L of the sail. The calculated drag coefficients are relatively independent 
of the parameter K ,  but the maximum lift coefficient increases markedly with 
increasing K ,  the maximum occurring a t  smaller angles of attack for larger 
values of K.  This theory is invalid for zero angle of attack and this evidently 

0.8 

0.7 

0.6 

0.5 

0.4 
c, 

0.3 

0.2 

0.1 

0 I I I I I 1 I I \, 
10 20 30 40 50 60 70 80 90 

Angle of attack, degrees 

FIGURE 6. Plot of C L  ver8us angle of attack for various K .  0, K = 0.1; 0, K = 0 .5 ;  
A, K = 1 ;  a, K = 2 ;  ., K = 3.5;  A, K = 5 .  

appears in the difficulty in obtaining convergent solutions of the integral equa- 
tions in this neighbourhood. However, the iterative scheme does converge for 
small angles of attack if K is small or moderate. The resulting lift coefficients 
which are plotted in figure 6 do not agree with those predicted by the airfoil 
analysis. The lift coefficient appears to increase linearly with the angle of attack 
for small angles but the limiting value is one-quarter the value predicted by 
Voelz (1950) and others. The disparity is embedded in the assumption that there 
is not separation in the airfoil theory while there is separation in the present case. 
However, since the experimental values of the lift coefficient obtained by Nielsen 
(1963) were one-half to one-third of those predicted by the airfoil theory, the 
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values predicted here in the limit of go + 0 appear to be as valid as the previous 
ones. Figure 8 shows that the moment decreases with increasing values 
of K .  

As mentioned above, this model breaks down when the angle of attack is too 
small. The tension in the sail has to be increased ( K  decreased), the smaller the 

1.2 

1 .o 

0.8 

b 

2 0.6 

X 
q 

c.? 

0.4 

0.2 

0 
0 10 30 50 70 90 

Angle of attack, degrees 

FIGURE 7. Plot of CL/C,  times angle of attack versus angle of attack. 

angle of attack, in order t o  obtain a convergent solution of (17). This is as might 
be expected physically, presumably foretelling the onset of a higher mode as 
predicted by the airfoil model. 

In conclusion, then, the free-streamline model can be used to describe the 
aerodynamics of a two-dimensional sail. This model complements rather than 
supercedes the airfoil model because of different ranges of validity in the angle of 
attack. In the small range where each can predict solutions, this model should 
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be a better representation of reality because the stream would begin to separate 
from the back of the sail. 
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FIGURE 8. Plot of moment times angle of attack versus angle of attack. The 
moment = M . p U a L 2 .  0, K = 0.1; A, K = 2; 0, K = 1 ;  v , K  = 3.5. 
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